Perché l’ordine delle operazioni è proprio quello che è? Cosa hanno di così speciale il “per” e il “diviso” perché abbiano precedenza su “più” e “meno”? Si tratta solo di una convenzione, o c’è qualcosa di più sotto?
Scopriremo che c’è una buona ragione per cui svolgiamo le operazioni nell’ordine che ci è stato insegnato a scuola. Prendiamo la questione alla lontana e cerchiamo di capire fino in fondo le ragioni del tradizionale ordine delle operazioni.
Ordine operazioni: perché per e diviso vengono prima di più e meno
Dato che la divisione è l’operazione inversa della moltiplicazione, e lo stesso vale per la sottrazione rispetto alla somma, possiamo limitarci a parlare del per e del più.
Possiamo pensare al più e al per come funzioni (cosa che effettivamente sono), cioè come delle leggi che prendono due numeri e, secondo determinate procedimenti, ne restituiscono un terzo.
Cerchiamo di concretizzare. La somma di due numeri potrebbe essere descritta come un robot che lavora sulle arance: ossia prende un certo numero di arance da una parte del tavolo, un altro numero di arance dall’altra parte del tavolo, le mette al centro e le conta tutte. Il numero che ne deriva è il risultato della funzione somma. Fin qui niente di troppo difficile: se voglio fare , immagino di avere 3 arance da una parte, 2 arance dall’altra, di metterle tutte vicine e poi contare fino a 5.
Proviamo a proporre un ragionamento simile per la moltiplicazione. Per far questo, pensiamo alla moltiplicazione come al robot che prende delle arance da una parte del tavolo, un certo numero di piatti da un’altra parte del tavolo, e pone un pezzo di ciascuna arancia in ogni piatto. Poi svuota i piatti al centro del tavolo e conta i pezzi di arance; quello è il risultato della moltiplicazione.
Per esempio, se il robot deve fare 3 per 2, prende 3 arance e 2 piatti, e mette un pezzo di ciascuno delle arance in ogni piatto. Come risultato si ottengono 6 pezzi di arance. Si tratta di un processo un po’ contro-intuitivo, che sembra per certi versi ricordare la divisione più che la moltiplicazione, ma l’effetto di porre un pezzo di ogni arancio in ciascun piatto è di moltiplicare le arance!
Ora, noi vorremmo che il nostro robot facesse il meno lavoro possibile. Consideriamo l’espressione . Ci sono due modi di svolgerla: fare prima il per e poi il più, oppure viceversa. Facciamo le prove e vediamo se deve lavorare di più se prima fa la moltiplicazione o se prima fa la somma.
Continua la lettura di Perché facciamo prima moltiplicazione e divisione, e poi somma e sottrazione?